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COAL-ASH AGGLOMERATION MECHANISM AND ITS 
APPLICATION I N  HIGH TEMPERATURE CYCLONES 

C.O. Jen  and K.C.  Tsao 
Department of Mechanical Engineer ing 

The U n i v e r s i t y  of Wisconsin--Milwaukee 
Milwalltkee, Wisconsin 53211 

ABSTRACT 

The increase of p a r t i c u l a t e  removal e f f i c i e n c y  i n  a high- 
tempera ture  cyc lone  is  be ing  examined a n a l y t i c a l l y .  A s imple  and 
e f f e c t i v e  approach is  p r e s e n t e d  t o  v iew the coal-ash agglomera t ion  
phenomenon n e a r  i t s  s o f t e n i n g / f u s i o n  tempera ture .  The p r o b a b i l i t y  
of adhesion of t h e  ne ighbor ing  p a r t i c l e s  when coupled w i t h  t h e  
number of c o l l i s i o n s  of p a r t i c l e s  i n  a high-temperature  c y c l o n e  
a p p e a r s  t o  demonst ra te  that t h e  high-temperature/pressure c y c l o n e  
d u s t  c o l l e c t o r  i s  c a p a b l e  of meet ing t h e  c h a l l e n g e  of hot-gas  
c leanup problems. The e f f e c t  of momentum of p a r t i c l e s ,  s u r f a c e  
t e n s i o n ,  and v i s c o s i t y  of molten boundary l a y e r  e n c l o s i n g  a c o r e  
p a r t i c l e  i s  i n v e s t i g a t e d  f o r  t h e  enhancement of p a r t i c l e  adhes ion .  
A n a l y t i c a l  computat ions and l a b o r a t o r y  exper ience  of a high-tem- 
p e r a t u r e  cyc lone  are p r e s e n t e d .  

INTRODUCTION 

The e f f e c t i v e  u s e  of f l u i d i z e d  bed combustion p r o d u c t s  a t  
h i g h  tempera ture  and p r e s s u r e  i n  a combined steam and g a s  t u r b i n e  
c y c l e  p l a n t  depends on t h e  p a r t i c u l a t e  removal e f f i c i e n c y  i n  a h o t  
g a s  clean-up system t o  i n s u r e  s a f e  o p e r a t i o n  of gas  t u r b i n e s  ( 1 , 2 ) .  
P r e s e n t l y ,  t h e r e  are numerous r e s e a r c h  and development p r o j e c t s  
involv ing  cyc lones  ( 3 , 4 )  , g r a n u l a r  bed f i l t e r s  (5) , molten salt 
s c r u b b e r s  ( 6 )  and o t h e r  hybr id  p r o c e s s e s  such as s o n i c  agglomera- 
t o r s ( 7 )  and charged f i l t e r s  i n  modif ied e l e c t r o s t a t i c  p r e c i p i t a t o r s  
(8).  
of adherent  p a r t i c l e s ,  r e c y c l i n g  of c l e a n i n g  media and d e c r e a s i n g  
of c o l l e c t i o n  e f f i c i e n c y  a t  h i g h  tempera ture  i n  clean-up a p p a r a t u s  
r e s u l t  i n  making hot  g a s  p a r t i c l e  removal a major t e c h n i c a l  c h a l -  
l enge .  

However, some s p e c i f i c  problems such as t h e  e f f e c t  of s t i c k i n g  
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264 JEN AND TSAO 

An e f f i c i e n t  and c o s t - e f f e c t i v e  approach u t i l i z i n g  t h e  s e l f -  
agglomerat ion phenomena of carbon-ash p a r t i c l e s  n e a r  i t s  f u s i o n  
tempera ture  t o  a modif ied mul t i -pass  cyc lone  w a s  proposed f o r  
f e a s i b i l i t y  s t u d y  ( 3 ) .  The combustion p r o d u c t s ,  o r  t h e  coa l -ash  
p a r t i c l e - l a d d e n  g a s  when p a s s i n g  a h i g h  tempera ture  zone i n  t h e  
cyc lone ,  would e n t e r  momentar i ly  a pseudo-molten s ta te .  The 
p a r t i c l e s  w i l l  c o a g u l a t e ,  agglomerate  and adhere  t o g e t h e r  t o  grow 
t o  l a r g e r  s i z e s .  The l a r g e r  s i z e  p a r t i c l e  w i l l  subsequent ly  b e  
separa ted  out  under  t h e  c e n t r i f u g a l  a c t i o n .  P a r t i c u l a t e  removal 
e f f i c i e n c y  w i l l  b e  i n c r e a s e d  f a r  beyond t h e  performance of a con- 
v e n t i o n a l  cyc lone  which is e f f e c t i v e  o n l y  f o r  p a r t i c l e s  l a r g e r  t h a n  
t e n  microns.  It w a s  r e p o r t e d  t h a t  t h e  a b i l i t y  of an  exper imenta l  
h i g h  tempera ture  c y c l o n e  t o  c o l l e c t  submicron p a r t i c l e s  ( p a r t i c l e s  
on t h e  o r d e r  of 2 lJ ) were increased  s u b s t a n t i a l l y  ( 9 ) .  However, 
t h e  coa l -ash  agglomerat ion mekhanism as i t  i s  occur ing  in a h i g h  
tempera ture  cyc lone  i s  n o t  f u l l y  unders tood .  

Based upon t h e  observed coa l -ash  agglomera t ion  phenomena i n  
a l a b o r a t o r y  h i g h  tempera ture  cyc lone ,  F igure  1, t h i s  s t u d y  pre-  
s e n t s  a conceptua l  model of agglomerat ion mechanism b e f o r e  and 
a f t e r  c o l l i s i o n .  E f f e c t s  of p a r t i c l e  s i z e ,  molten l a y e r  s i z e ,  
molten l a y e r  t h i c k n e s s  e n c l o s i n g  t h e  s o l i d  p a r t i c l e ,  and t h e  k ine-  
t i c  energy of p a r t i c l e s  b e f o r e  c o l l i s i o n  are examined. 

ANALYTICAL FORMULATI ON 

The g e n e r a l  d e s i g n  of a d r y  i n v o l u t e  cyc lone  w i t h  r e c t a n g u l a r  
i n l e t  s e c t i o n  assumes t h a t  t h e  p a r t i c l e s  i n  t h e  d i r t y  g a s  stream 
have t h e  same t a n g e n t i a l  v e l o c i t y  (10).  A f t e r  e n t e r i n g  t h e  cyc lone  
proper ,  t h e  magnitude of r a d i a l  v e l o c i t y  component v a r i e s  accord ing  
t o  i t s  s i z e .  Under t h e  c e n t r i f u g a l  a c t i o n ,  it is  expected t h a t  
c o l l i s i o n  w i l l  t a k e  p l a c e  among t h e  p a r t i c l e s  a long  i t s  s p i r a l  
p a t h .  A t  any time t a f t e r  t h e  p a r t i c l e s  passed t h e  i n l e t  sec- 
t i o n ,  and a t  any r a d i u s  r ,  t h e  r e l a t i v e  v e l o c i t y  i n  t h e  r a d i a l  
d i r e c t i o n  between a l a r g e r  and a smaller p a r t i c l e  w a s  g iven  by 
(10 ,11) ,  

where r1 is  t h e  i n n e r  r a d i u s  of t h e  cyc lone ;  r 2  i s  t h e  r a d i u s  of 
t h e  cyc lone  body ('2 = r1 + b ) ;  b i s  t h e  i n l e t  s e c t i o n  wid th ;  w 
i s  t h e  i n l e t  d u c t  h e i g h t ;  Q ,  t h e  g a s  v o l u m e t r i c  f l o w  rate; pa, t h e  
v i s c o s i t y  of a i r  a t  o p e r a t i n g  tempera ture  and p r e s s u r e ,  pp, t h e  
mass d e n s i t y  of t h e  s o l i d  p a r t i c l e ;  and d l  and d, are t h e  d i a m e t e r s  
of l a r g e r  and smaller p a r t i c l e s .  
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COAL-ASH AGGLOMERATION 265 

FIGURE 1. Photograph of agglomerated p a r t i c l e s .  

It w a s  premised t h a t  a major mechanism of coal-ash agglomera- 
t i o n  as it o c c u r s  i n  a cyc lone  i s  due  t o  t h e  p a r t i c l e  c o l l i s i o n .  
While t h e  cyc lone  i s  opera ted  n e a r  coa l -ash  f u s i o n  tempera ture ,  
t h e  incoming p a r t i c l e s  are s u b j e c t e d  t o  a r e g i o n  of h i g h  tempera- 
t u r e  zone, t h u s  momentarily approaching a pseudo-molten s ta te .  A 
t h i n  molten l i q u i d  l a y e r  of t h i c k n e s s ,  6 , e n c l o s e s  t h e  s o l i d  c o r e  
of each p a r t i c l e .  This  t h i n  l a y e r  of molten a s h  embraces and 
f u s e s  t o g e t h e r  as a r e s u l t  of c o l l i s i o n  and impact ion,  t h u s  forming 
a g r e a t e r  s ize  of p a r t i c l e .  

F igure  2 shows t h e  geometry of t h e  cyc lone  under  s t u d y .  
F igures  3a, 3b,  3c show t h e  c o l l i s i o n  mechanism of two p a r t i c l e s  
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266 JEN AND TSAO 

FIGURE 2 .  Dimension parameters of cyclone. 

wi th  r a d i i  R 1  and R,; molten l aye r  th icknesses ,  61 and 6,; and 
approaching v e l o c i t y  v.  Under t h e  assumptions of that a l l  the 
p a r t i c l e s  are s p h e r i c a l  and t h e  s o l i d  c o r e  i s  p e r f e c t l y  e l a s t i c ,  
Figure 3b and 3c hypothesize t h e  p a r t i c l e  i n t e r f a c i a l  mechanism 
during and a f t e r  c o l l i d i n g .  

A t  t h e  i n s t a n t  of d i r e c t  contac t  of t h e  two molten l i q u i d  
l aye r s ,  two cases  would p r e v a i l .  Should the l a r g e r  p a r t i c l e  
have a g r e a t e r  v e l o c i t y ,  t h e  l i q u i d  l a y e r  would s p i l l  over and 
then enclose t h e  smaller p a r t i c l e .  On t h e  o the r  hand, i f  t h e  
smaller p a r t i c l e  i s  s t r i k i n g  upon t h e  l a r g e r  ones,  t h e  smaller 
p a r t i c l e  w i l l  indent and s ink  i n t o  t h e  v iscous  reg ion  of t h e  
l a r g e r  p a r t i c l e  a t  i n t e r f a c e .  In e i t h e r  case, t h e  k i n e t i c  energy 
of t h e  moving p a r t i c l e  i s  being r e t a rded ,  absorbed and d i s s i p a t e d ,  
t h u s  favoring agglomeration. Figures 3b and 3c show a l s o  t h e  
f o r c e s  ac t ing  upon both  p a r t i c l e s  during and a f t e r  c o l l i s i o n .  
Agglomeration of p a r t i c l e s  w i l l  occur i f  t h e  k i n e t i c  energy re- 
quired f o r  separa t ion  is  s m a l l e r  than  t h e  sum of f r i c t i o n a l  drag  
and t h e  i n t e r f a c i a l  t ens ion .  That i s ,  

Kine t ic  energy < Energy d i s s i p a t i o n  due t o  
f o r  separa t ion  - f r i c t i o n  and form drag 

Work done due 

f o r c e  of l i q u i d  
l aye r  

+ t o  i n t e r f a c i a l  (2) 
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COAL-ASH AGGLOMERATION 267 

(a) BEFORE 

-1 R s - 8 .  ) eb= cos (------ RS 

Q = 2eb 

(b) DURING eb - + WORK OF SURFACE T E N S I O N  - - VISCOUS DISSIPATION 

( C )  AFTER 

FIGURE 3. Schematic diagram of c o l l i s i o n .  

According t o  c o n s e r v a t i o n  of momentum, t h e  v e l o c i t y  of t h e  
combined system is 

vc = mLvr(dL) + m,vdds) (3)  

m,+ ms 
where m ' s  are t h e  masses of p a r t i c l e s ,  vr's  t h e  r a d i a l  v e l o c i t y ;  
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r = 2.96 c m  
Q = .388 m3/min 
U ~ 5 5 8  poise 
0 = 150 dyne/cm 

------- ENERGY REIJUIRED FOR SEPARATION 

ENERGY OF APPROACHING BEFORE 
COLLl SI ON 

Rs = 2 m i c r o n  

R1 = 10 m i c r o n  

0- 

0 

5 10 15 20 
Ss ( '/a OF R, ) 

FIGURE 4 a , b , c .  Energy v e r s u s  molten l a y e r  t h i c k n e s s  6 . 
S 

and s u b s c r i p t s  1 and s r e f e r  t o  l a r g e r  and smaller p a r t i c l e s .  
S i n c e  a t  t h e  i n s t a n t  of c o l l i d i n g  of two p a r t i c l e s ,  t h e  es t imated  
Reynolds number of t h e  molten l i q u i d  l a y e r  i s  found t o  b e  on t h e  
o r d e r  of 0.01 o r  smaller, t h e  p a r t i c l e  d r a g s  are t h e n  approximated 
as  i n  t h e  c r e e p i n g  f low (12) and i s  c a l c u l a t e d  from 
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COAL-ASH AGGLOMERATION 269 

r = 296 cm 
0 = .3aa m3/min 
u -558 poise 
6 = 150 dyne/cm 

------- ENERGY REQUIRED FOR SEPARATION 

ENERGY OF APPROACH I NG 
COLLISION 

BEFORE 

R, = 2 micron 

R~ = 2 2  micron 

5 10 15 20 
s s  ( ‘/o OF Rs 

FIGURE 4 B  

where @ 
is  assumed t o  be t w i c e  the angle of contact, 
s o l i d  core, Figure 3b, 

i s  the angle of l iquid  layer overlapping each other and 
Bb, of the  par t i c l e  
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r = 2.96 cm 
Q = -388  m3/min 
u ~ 5 5 0  poise 
0 =150 dyne/cm 

----__- ENERGY REQUIRED FOR S E W T  ION 

ENERGY OF APPROACHING BEFORE 
COLLl SION 

Rs = 2 micron 

R1 =30 micron 

FIGURE 4 C  

m u l t i p l i c a t i o n  e q u a t i o n s  ( 4 )  and (6 )  by x (= R, - R, c o s  €I ), the 
l inear  d i s t a n c e  of common l i q u i d  l a y e r  a long  the l ine of impact ion ,  
r e p r e s e n t s  the energy ,  Ef, d i s s i p a t e d  through v i s c o u s  e f f e c t ,  
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COAL-ASH AGGLOMERATION 2 7 1  

& =  .lo Rs 
0 = .388 m3/min 

0 1 1 5 0  L dyne/cm 

SEPARATION 

1 U ~ 5 5 8  poise \ 
\ 
\ 
\ 
\ 
\ - ENERGY OF APPROACH I NG 
\ BEFORE COLLISION \ 
\ 
\ 
\ 

----- ENERGY REQUIRED FOR 

\ 
\ Rs = 1 micron 
1 
\ R~ = 10 micron  
\ 
\ 
\ 
\ 
\ 

h 

E1 
l 

0) 
El 
R a 

m 

'2 
v 

w 

r ( e m )  

FIGURE 5a ,b ,c .  Energy versus  r a d i a l  p o s i t i o n  r.  

However, r i g h t  a f t e r  t h e  e l a s t i c  c o l l i s i o n  between t h e  s o l i d  
co res ,  the  p a r t i c l e s  tend t o  move away from each o t h e r  causing t h e  
s t r e t c h i n g  of molten i n t e r f a c e  as shown i n  Figure 3c. 

Assuming t h e  circumference, Cr, of the  contac t  a r ea  decreases  
l i n e a r l y  wi th  r e spec t  t o  t h e  d i s t ance  between t h e  p a r t i c l e  cen te r  , 
two p a r t i c l e s  w i l l  be detached completely i f  t h e  cen te r  d i s t a n c e  
reaches (R1 + 61 + R, + 8,). The energy needed t o  sepa ra t e  t h e  
two p a r t i c l e s  a f t e r  c o l l i s i o n  is  the work done i n  changing the 
area of a s u r f a c e  f i lm ,  which i s  
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& =  .lO Rs 
Q = ,388 m3/min 
u - 5 %  poise 
6 =150 dyne/cm 

-_----- ENERGY REQUIRED FOR S E N T  I ON 

ENERGY OF APPROACHING BEFORE 
COLLISION 

R s =  1 micron 

R = 18 micron 
1 

- 

4 -  

2 -  

0, I 1 

2.0 3.0 4.0 5.0 Go 

FIGURE 5B 

2 ( 5' + 5,) 
2 E, = ( C , d ) *  

where 0 is  the surface tension of the molten coal-ash layer ,  and 

cr = 2 q w  
For s impl ic i ty ,  take the or ig in  of coordinate of approaching 

system a t  the center of the  smaller par t i c l e ,  the k inet ic  energy 
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14' 

1 2 -  

273 

66' .lo R, 
O .388 m y m i n  
U 9558 Poise 
d n 150 dyne/cm 

ENERGY REWIRED 'FOR 
SEWRATION 

ENERGY OF APPROACH I NG 
BEFORE COLLISION 

------- 

8 -  

a -  

6 -  
a 
a -  

h 

I 

eu " 
w 4- 

2 -  

0 

'1 R,= 1 micron 

R1= 30 micron 

FIGURE 5C 

E, as ca r r i ed  by the  l a r g e r  p a r t i c l e  is 112 Mlv2. Predict ion of 
agglomeration o r  fragmentation a f t e r  the p a r t i c l e  c o l l i s i o n  is  t o  
examine t h e  r e l a t i v e  k i n e t i c  energy E, whether i t  is  l a r g e  enough 
t o  overcome t h e  r e s i s t ance  as caused by t h e  e f f ec t  of f l u i d  drag 
and surface tension. 

RESULTS AND DISCUSSION 

With t h e  a v a i l a b i l i t y  of coal-ash physical and chemical pro- 

&, upon agglomeration is  shown i n  Figures 4a, 
p e r t i e s  (13), t h e  e f f e c t  of molten l aye r  thickness  enclosing t h e  
smaller p a r t i c l e ,  
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' 

r -  2.96 c m  

s =  .22 Rs 
u - 5 5 8  Poiee 
0 = 1 5 0  dyne/cm 

-------- ENERGY REQUIRED FOR FEWRATION 

ENERGY OF APPROCHING BEFORE COLLISION 

* .80' a 7 .TO.  
Q 

a 
.60. - .a- 
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R, P 2 2  micron 
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FIGURE 6.  Energy v e r s u s  volumetr ic  f low rate Q .  

4b, and 4c. A t  t h e  c o n d i t i o n s  d e s c r i b e d  f o r  computat ion,  t h e  
c o l l i s i o n  of 2~ and 2 2 ~  p a r t i c l e s  a t  a r a d i a l  p o s i t i o n  of 2.96 
c m  away from t h e  cyc lone  c e n t e r ,  does  show t h a t  t h e  p a r t i c l e s  
w i l l  s t a y  togeeher  a f t e r  c o l l i s i o n ,  i f  
For p a r t i c l e s  smaller than  10 1-1 , F i g u r e  4a ,  and g r e a t e r  t h a n  3 0 ~ ,  
Figure  4c, agglomerat ion and f r a g m e n t a t i o n  w i l l  t aken  p l a c e ,  res- 
p e c t i v e l y .  
s e p a r a t i o n  i s  g r e a t e r  o r  smaller t h a n  t h e  energy of approaching 
p a r t i c l e s  b e f o r e  c o l l i s i o n .  

F igure  5b i n d i c a t e s  that f o r  a g iven  p a i r  of p a r t i c l e s ,  t h e r e  
e x i s t s  an optimum l o c a t i o n  f o r  which p a r t i c l e s  w i l l  s t i c k  t o g e t h e r  
a f t e r  c o l l i s i o n .  
r a d i u s  a s  t h e  s i z e  of p a r t i c l e  p a i r  becomes c l o s e r ,  F i g u r e  5a shows 

6, 5 0.1  R, and v i c e  v e r s a .  

T h i s  i s  due  t o  t h e  f a c t  t h a t  t h e  energy r e q u i r e d  f o r  

This optimum l o c a t i o n  s h i f t s  toward l a r g e r  cyc lone  
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s u c h  a case where e n t i r e  cyc lone  space  can b e  u t i l i z e d  f o r  t h e  in- 
tended agglomerat ion p r o c e s s .  F i g u r e  5c i n d i c a t e s  t h a t  t h e  oppo- 
s i t e  is  t r u e .  

S i n c e  t h e  c a p a c i t y  of c l e a n i n g  equipment is  predominately de-  
termined by t h e  volumetr ic  f low rate of hot  g a s e s ,  once a g a i n ,  f o r  
a chose  set of o p e r a t i n g  parameters  F igure  6 shows t h a t  t h e r e  
e x i s t s  a c r i t i c a l  f low ra te  f o r  which f ragmenta t ion  may occur  a f t e r  
c o l l i s i o n .  

I n  summary, t h e  h i g h  tempera ture  cyc lone  c o l l e c t i o n  e f f i c i e n c y  
i s  governed by t h o s e  i n t e r m i n g l i n g  f a c t o r s  such as t h e  p a r t i c l e  
size, t h e  geometry, t h e  molten l a y e r  t h i c k n e s s  e n c l o s i n g  each 
p a r t i c l e ,  vo lumetr ic  f l o w  rate  and t h e  d u s t  p r o p e r t i e s .  
c les  smaller t h a n  1 0  p , t h e  h i g h  tempera ture  cyc lone  is an e f f e c t i v e  
d e v i c e  f a v o r i n g  agglomerat ion.  

It is  of i n t e r e s t  t o  n o t e  t h a t  t h e  combined e f f e c t  of volu-  
metric f l o w  rate and the cyc lone  r a d i i  d i s p l a y  o p p o s i t e  t r e n d s  
toward agglomerat ion.  It i s  h i g h l y  probable  that an  optimum de- 
s i g n  i n c o r p o r a t i n g  a l l  parameters  f o r  h i g h  tempera ture  cyc lone  
can b e  synthes ized .  Even though t h e  proposed mathematical  model 
d i d  n o t  t a k e  i n t o  c o n s i d e r a t i o n  of o t h e r  p h y s i c a l  f a c t o r s  such as 
t h e  i n t e r m o l e c u l a r  and g r a v i t a t i o n a l  f o r c e  e f f e c t s ,  t h e  rea l  kine-  
matic and dynamic f l o w  behavior  at  t h e  i n t e r f a c e ,  y e t  t h e  model 
s h a l l  s e r v e  as an  a n a l y t i c a l  g u i d e  i n  c o n s t r u c t i n g  t h e  h i g h  t em-  
p e r a t u r e  cyc lone  f o r  p i l o t  t e s t i n g  and f o r  f u r t h e r  improvement i n  
p r a c t i c a l  engineer ing  des ign .  I n  conclus ion ,  t h e  i n c r e a s e d  c o l l e c -  
t i o n  e f f i c i e n c y  of an  exper imenta l  h i g h  tempera ture  cyc lone  (9)  
t h u s  can b e  expla ined  by t h e  proposed s imple  y e t  e f f e c t i v e  con- 
c e p t u a l  approach. 
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